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I. INTRODUCTION

This report is a sumary of the major research results obtained under

Contract N00014-78-C-0443. Work under this contract was direced at a

general class of Linear-Quadratic-Gaussian control problems herein called

"cumulant control" problems.

Over the past few years, Liberty and colleagues [1],[2] and [3] have

investigated probabilistic questions surrounding the random performance

measure normally associated with linear stochastic control systems. Early

work was aimed at finding an analytical means of evaluating the performance

of such systems [3]. Results of this effort consisted of a solution to

the "performance analysis" problem. These results allow the determination

of complete statistical descriptions of system performance without requiring

stochastic simulation.

Work, imediately preceeding that reported here, was directed at

finding statistical descriptions of performance for design purposes (4].

This development was a natural analytical extension of the performance

analysis results. It led to a promising analytical structure for design

as well as a demonstration of the existence of control laws that achieve

less variance of performance than the classical Linear-Quadratic-Gaussian

controller.

The original statement of a "cumulant control problem" was contained

in [4] but not actually solved. Despite the promise of the new formulation,

it was not clear how to actually solve a cumulant control problem involving

statistical parameters other than the mean. The primary objective of the

research summarized here was to resolve the principal difficulty blocking

solution of problems in the cumulant class.

Loosely speaking, the difficulty involves enforcement of an "admissi-

bility" constraint on the set of control actions over which optimization

N7



of cumulant indices of system performance is carried out. In this class

of stochastic optimal control problems, performance indices consist of

linear combinations of mean-conditional-cumulants of a quadratic per-

formance measure attached to a linear stochastic system. The investiga-

tion was carried out for discrete time systems over a finite time inter-

val. The resulting finite dimensional setting removed difficulty en-

countered in the continuous time case in seeing the essence of the ad-

missibility enforcement question.

Mean-conditional-cumulants appear in this work as E{a } wherectlNN

is the c-order cumulant of performance, conditioned on system output

observations from time 0 to time N. Linear combinations of these objects

are to be minimized over all control actions in an "admissible" class.

Essentially, to be admissible, a control action must be determined by a

physically realizable operation on system output observations. The key

result reported here is the discovery of a set of random variables fic }

with the property that

E(Kc} - E{ec 1 (1)

It can be shown that constrained (with respect to admissibility) optimiza-

tion over linear combinations of the latter objects is equivalent to con-

strained optimization over mean-conditional-cumulants.

2
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II. SYSTSM DESCRIPTIONt

Lot P denote the set of integers {O,l,...,N} and lot Rq denote the q-

fold Cartesian product of the real line. In this work, several vector-

valued random sequences will be defined on the discrete time interval P.

It will be understood that all expressions containing those random sequences

hold on the interval P unless otherwise specified.

Consider the problem of controlling the noisy system described on P

by

x(k.l) a A(k)x(k) + 8(k)u(k) + (k) (2)

and

z(k) - C(k)x(k) + 6(k) (3)

where the state xk)eRn, the control action u(k)eRe, and the observation

z(k)eRr . The initial condition for (2), x(O), is assumed Gaussian with

mean

x0 - E{x(O)} (4)

and covariance

to a E{[x(O) - xo] [x(O) - x1T (s)

where E{.} symbolizes the expectation operation and C T ) denotes matrix

transposition.

Let the observation noise, 6, and the state process noise, , be

zero-man Gaussian white processes with

E{Q(k)OTCL)) - 0, (6)

E{x(o) - x ]& T 0, (7)

E{[x(O) - xo0T CL)) . 0, (8)

E{&(k)jTCt)) a "(k)6 C(9)

PW

E{t~ t)- ~) t(0
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where e(k) and E(k) are positive definite and positive semi-definite on

P. Here, 6kt is the Kroneker delta.

Attach to (2) a performance measure, J, defined by

I [xT~k)Q(k)x(k) + u T k-l)R~k-l)u~k-l)], (11)

kal

where the weighting matrix, Q(k), is positive semi-definite on P and the

weighting matrix, R(k), is positive definite on P. Both Q(k) and R(k) are

symmetric matrices.

The control objective is to find a control sequence, u(), in a par-

ticular class (called admissible) such that a certain statistical pr-

formance index (formed from mean-conditional-cumulants of J) is minimized.

Mean-conditional-cumulants are introduced in Section III. The admissible

class of control actions is described as follows.

Let

u(k) - f(k;z) (12)

where

f:PxZ[P]m

is an operator mapping time k and an output sequence z(.) to a control

sequence value u(k). The set of output sequences on P is denoted by Z(P].

The admissible class of feedback control laws is determined by f opera-

tors that are

1. causal

and

2. satisfy the growth condition

IIf(k;g) - f(k;h) I 'c Ig-h ll (13)

* for all keP, for all g,hcZ[P], and for some c >o. An operator, f, is

causal if whenever g(a) * h(a) for a~kcP, then fCk;g) * f(k;h).

4
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III. CONDITIONAL CUIULANTS OF J

Since feedback control laws are being sought, it is desirable to

formulate statistical indices of J such that optimization over these

indices will directly couple control action to past observations. The

secret to such a formulation lies in the use of the conditional expecta-

tion operator, E(-IFk} where Fk is the minimal a-algebra induced by the

set of observations {z(T):TE[O,k]}. By definition, there are no observa-

tions when k = -1. When k N, FN will be written without a subscript. An

interpretation of Fk for k>O is that it represents the minimal information

necessary to describe uncertainty about x(O), {g(T):Te[O,k-l]}, and

{e(t):Te[O,k]} after {z(T):Te[O,k]} is known.

The particular statistical indices presented in this section are con-

ditional cumulants. These objects are selected bacause of their inherent

quadratic structure. This property of cumulants of quadratic performance

measures was first observed by Liberty in [1] and exploited in [2], [3]

and [4]. Optimization over quadratic performance indices will lead to

linear control structures.

It is necessary at this point to introduce some notation. It is well

known that E(x(k) IFl is the smoothed least squares estimate of x(k) which

will be denoted by

R(k IN) 4 E{x(k) )F. (14)

Let the smoothed estimate error covariance kernel, r s(k,t) be defined

as

rs(k,t) E L {[x(k) - R(kIN)][x(t) - R(tINITIF
. . i "E(kIN)iTcZIN)IF}, (IS)

I .wheret i, i(kIN) x(k) - R(kIN), (16)

5
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is the error in the smoothed estimate of the state vector. Then, if the

linear Gaussian assumptions of equations (2) through (10) are satisfied,

and if the control action u(.) is admissible.

E(r (k,Z)} - r (k,/). (17)
5 s

That is, rs (k) is not random.

Next, define the iterated kernel, rc(k,t), asas

N
r5 (k,L) 7 rs(k,a)Q()r's(A, >l, (18)a= 1

where

rs(k,t) r rs(k,t). (19)

Also define
k

. L.(kJN )  7 ra-1 (k,t)Q(t)i(tIN)a-1 s

-1 a-l.rs (k,k)Q(k)x(kIN), a>l. (20)

It can be shown that the conditional cumulants of J can be expressed as

N
KN TR[rs(k,k)Q(k)] +

N T(21)

+ I [RT(kjN)Q(k)R(kjN) + u (k-l)R(k-l)u(k-l)]
k-1

and

IaN=(a-l)!2 a1 7TR(1rc(kk)k]

N
+ a!2a  7 x (kIN)Q(k)nral(kN), a>l, (22)

I., where TR[.] denotes the matrix trace operator. Equations (21) and (22)

are single summation expressions of the conditiopal cumulantG.in terms pf.

dynamical (but physically unrealizable) variables x(.IN) and n 1.I  .

* "Note that both (21) and (22) contain uncontrollable terms.

6



IV. THE CUMULANT CONTROL PROBLEM CLASS

The conditional cumulant expressions given by (21) and (22) can be

placed under expectation to yield interesting statistical parameters of J.

They are interesting because they have a quadratic structure in the dy-

namical variables i(.jN) and n a(-IN), and because these variables can be

expressed explicitly in terms of the observation sequence z(.). The

precise statistical interpretation of mean-conditional-cumulants is given

in [4].

It is now possible to define a class of optimal control problems,

called "cumulant control" problems, in terms of mean-conditional-cumulants.

Let A denote the class of admissible control actions

for the system described by (2)-(10) with performance measure

J as given in (11). Let K IN' al, be conditional cumulants

of J, and let Vat be non-negative scalar constants for ai2.

Then, for each set of K scalar constants a cumulant control

problem is specified by the statementI K
Minimize E{I }I I N "a a I

ueA 11N ct2 tl

subject to the dynamical constraints on i('IN) and 1 (-IN).

Note that when = 0, 2.ot<K, the cumulant control problem specified is

precisely the minimum mean Linear-Quadratic-Gaussian problem since

IE{KIN E{J}.

Although the class of cumulant control problems is clearly specified, it

is not so clear how one should carry out the indicated minimization. The

I. specific point of concern is enforcement of the admissibility requirement.

* . o This point is particularly bothersome when one notes (as at the end of

, Section III) that the conditional cumulants have been explicitly expressed
'4

in terms of noncausal dynamical variables. The results summarized in this

7



section resolve this difficulty.

-.If the conditional cumulants were expressed in terms of causal dy-

namical variables, which in turn were driven by the observation sequence,

then standard optimization techniques, applied under expectation to all

control-observation sequence pairs, would couple the control action to

these variables and an admissible, optimal-control action would be realized.

Clearly, this is not the case for the conditional cumulants. However, it

can be shown that portions of the conditional cumulant formulations are

zero under expectation. The portions that remain contain only causal

variables and optimization over these new objects yields physically realizable

control action that solves the original cumulant control problem.

1 8



V. CONDITIONAL CUMULANTS UNDER EXPECTATION

Through Section IV only one state estimate has been encountered,

namely, the so-called "fixed interval" smoothed estimate, x(kjN). Its

t error covariance kernel has been given the symbol r (k,t). In this sec-

tion, several other well-known least-squares state estimates will arise.

These are: the "filtered state estimate,"

x(klk) a E{x(k)IFk0, (23)

the "one-step predicted state estimate,"

k(klk-1) =4 Efx(k)IF k-l}, (24)

and the "fixed-point smoothed state estimate,"

(r(Tlk) 4- E{x(T)IFk}, T<k. (25)

The error covariance kernels associated with (23) and (24) are useful.

They are denoted by FF(k,Z) and rp (k,Z), respectively. Defining a new

matrix

Wr-i k ' ° )  [ Zk't)Qat)rp(ta) -- (k, k)Q(k)' (k,a), (26)

(20) can be rewritten as

N
ni,_1 (klN) = 6a1 (klk) + Wai (k,)M(a)v(Crao-l), (27)

azk+l

where
k l

fIa1 (k =k) -(kQ ((kkk) (28)

In addition, the fixed-interval smoothed estimate can be written as

N
R(tjN) = R(Zlk) + T rl (,a)MCa)v(aja-l), (29)

, c=k+l

where v(joa-1) is the "innovations process". This separation of the dy-

namical variables (present in the conditional cumulants) into causal and

iN. 9



noncausal parts is the key to resolution of the admissibility difficulty.

It can be shown that the mean-conditional-cumulants can be written

entirely in terms of causal variables. These expressions are
4

N

E{t INI - E( I TR(rF(k,k)Q(k)]
k-1

N TT
N (X(klk)Q(k)(kk)JuT(k-I)R(k-l)u(k-l)]}

k-l

E{, 1 (30)

and

N k
E{ N  E{(a-l)!20'1  TR[frl(k,k)+2cL I [r (k,T)

k1l T=l

- r (k,T)]Q(T)r " (,k)-[ (k,k)-r (k,k)]Q(k)ra 1 (k,k)}Q(k)]

N ~
S1 R(klk)Q(k)rA l(klk)}

k- 1
E E{K }, c>l. (31)

Optimization, in the cumulant control problem, over these objects

will couple control action to the fixed point smooth estimate of the state.

Thus, causal feedback control can be realized.

IN 1
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VI. CONCLUSION

The results sumarized in this report open the door to several

avenues of investigation and should enhance the applicability of linear

stochastic control theory. The details of this work are currently being

prepared for journal publication. In addition to the results presented

here, an analogous investigation has been conducted for continuous time

systems and minor investigations of the cumulant structure as applied to

estimation problems have also been carried out. The latter studies have

led to interesting observations, but inconclusive results. More research

is required here. It would be desirable to relax the Gaussian assumption

in this class of problems, but to date no mechanism for doing so has been

found for cumulants of order two or more.

Dynamical feedback control laws for certain cumulant control problems

have been derived in recursive form and will be published along with the

details of the cumulant class derivation. Properties of cumulant controllers

are totally unknown. Several suboptimal structures are appealing and should

be investigated. Some of these lead to interesting classes of Riccati-type

equations about which little is known [5].

i

* I
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